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Abstract— In this paper, we study the effects of channel
estimation error on the bit error rate (BER) of orthogonal
frequency division multiplexing systems in multipath Rayleigh
fading channels. Due to the additive white Gaussian noise and the
intercarrier interference caused by the residual carrier frequency
offset, the channel estimation based on the training symbols is not
perfect. We characterize the performance degradation resulting
from imperfect channel state information by deriving the BER
formulas for BPSK, QPSK, and 16-QAM modulation schemes.
Simulation results validate the accuracy of our derived formulas.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
become a popular transmission technique for high-data-rate
wireless communications in recent years. By dividing the
whole bandwidth into subchannels and transmitting data sym-
bols in parallel, the effective data period is enlarged and the
intersymbol interference (ISI) caused by the multipath fading
channel can be effectively reduced [1].

The issues of channel estimation in OFDM systems have
been considered in [2] where the minimum mean-square error
(MMSE) and least-square (LS) channel estimators exploit the
property of cyclic prefix to obtain channel estimates. The
MMSE channel estimator fully uses the time and frequency-
domain correlations of the frequency response of time-varying
dispersive fading channels has been derived and analyzed in
[3]. The authors also addressed the channel statistics mis-
matched problem and proposed a robust channel estimator
which is insensitive to the channel statistics. The uses of pilot-
symbol-aided channel estimation in both time and frequency
domain have been investigated in [4] and [5].

When the OFDM-based wireless system operates in a
slowly fading multiple-access environment, the use of training
(preamble) symbols to facilitate the channel estimation task
has been standardized in the IEEE 802.11a/g standard [6]. The
effect of channel estimation error based on the long preambles
in OFDM-based wireless local area networks (WLAN) was ex-
amined in [7]. The authors considered the channel estimate is
not only corrupted by additive white Gaussian noise (AWGN)
but also by the intercarrier interference (ICI) due to the
residual carrier frequency offset (CFO). In the BER analysis,

it has been assumed the channel estimate and the channel
estimation error are uncorrelated when the interference power
is small. As indicated in [8], the method presented in [7] may
overestimate the BER in some situations.

In this paper, we consider the same scenario as in [7].
However, we perform the exact BER analysis for BPSK,
QPSK, and 16-QAM modulated OFDM signals in multipath
fading channels without any assumption of the correlation
between the channel estimate and the channel estimation error.
Therefore, our method and result are accurate even for large
CFO and channel estimation error. Moreover, the expression of
the derived BER formula is in a simple form and no numerical
integration is needed to evaluate it.

The remainder of this paper is organized as follows. In
Section II, we describe the system and channel model. Section
III presents the detailed BER analysis for BPSK, QPSK, 16-
QAM modulated OFDM signals with imperfect channel state
information (CSI). Numerical results are described in Section
IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We assume the multipath fading channel is fixed during one
transmitted frame and the channel estimation is facilitated by
the preamble (training) symbols embedded in the beginning
of the data frame. In mathematical form, the mth transmitted
baseband OFDM symbol in a frame can be expressed as

xn(m) =
1√
N

N−1∑
k=0

Xk(m)ej2πnk/N , m = 1, 2, · · · ,M, (1)

where k is the index of subcarrier, N is the total number
of subcarriers, Xk(m) ∈ X are the transmitted modulation
symbols, and M is the number of OFDM symbols in one
frame. Three types of modulation formats X are consid-
ered, namely, BPSK, QPSK, and 16-QAM [9]. The first
P OFDM symbols are training symbols. For each OFDM
training symbol, the modulation is restricted to be BPSK
and the transmitted modulation symbols at each subcarrier,
denoted by Xp

k ∈ {−√
Eb,

√
Eb}, are the same for the symbol

index m from 1 to P . The training symbol patterns Xp
k for
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m = 1, 2, · · · , P, k = 0, 1, · · · , N − 1 are known at both the
transmitter and the receiver ends.

For simplicity of exposition, we assume the cyclic prefix
is inserted at the beginning of each OFDM symbol and is
removed in the demodulation process [1]. Furthermore, we
assume the length of cyclic prefix is longer than the maximum
delay spread of the multipath fading channel and the ISI can
be completely eliminated.

The transmitted OFDM signal passes through a multipath
fading channel whose impulse response is represented by the
tapped-delay line model as [9]

h(t) =
L−1∑
l=0

hlδ(t − lT/N), (2)

where L < N is the number of multipaths, the path gains
hl are independently circularly symmetric complex Gaussian
random variables with mean 0 and variance σ2

l , δ(·) is the
Dirac-delta function, and T is the effective OFDM symbol
period. The corresponding frequency response at subcarrier i
is

Hi =
∫ ∞

−∞
h(t)e−j2πit/T dt =

L−1∑
l=0

hle
−j2πil/N . (3)

Since hl are complex Gaussian random variables, the weighted
sum of them is also complex Gaussian. The mean and variance
of Hi are

E[Hi] =
L−1∑
l=0

E[hl]e−j2πil/N = 0, (4)

Var[Hi] = E[HiH
∗
i ] =

L−1∑
l=0

σ2
l , (5)

where E[·] denotes the probabilistic expectation and ∗ repre-
sents the complex conjugation. Without loss of generality, we
assume the sum of the average power of each multipath is
normalized to 1, i.e.

∑L−1
l=0 σ2

l = 1 = Var[Hi].
At the beginning of a frame, the CFO estimation is not

accurate due to the presence of noise. The normalized CFO
affecting the training symbols for channel estimation is de-
noted by ε = f∆T where f∆ is the CFO in Hertz. Then the
mth received training symbol after the Fast Fourier transform
(FFT) can be written as [10]

Yi(m) = αHiX
p
i + Ii + Wi(m),

m = 1, 2, · · · , P, i = 0, 1, · · · , N − 1 (6)

where the symbol α = sin πε
N sin(πε/N)e

jπε(N−1)/N , Ii =∑N−1
k=0,k �=i HkXp

k
sin(πε)e−jπ(k−i)/N

N sin[π(k−i+ε)/N ] e
j[πε(N−1)/N ], and Wi(m)

are circularly symmetric complex Gaussian random variables
with mean 0 and variance N0/2 in both real and imaginary
components. For brevity, we simply use the notation Wi(m) ∼
CN (0, N0).

The channel estimate of Hi based on the received training
signals Yi(1), Yi(2), · · · , Yi(P ) is given by

Ĥi =
1
P

P∑
m=1

Yi(m)
Xp

i

= αHi + Îi + Ŵi,

i = 0, 1, · · · , N − 1, (7)

where Îi = Ii

Xp
i
, Ŵi = 1

P

∑P
m=1

Wi(m)
Xp

i
∼ CN (0, N0

PEb
).

The training symbols can be utilized not only for channel
estimation, but also for fine CFO estimation [11]. Therefore,
it is reasonably assumed the CFO is perfectly estimated and
compensated after the training period. In this case, the received
OFDM data symbol after the FFT is

Yi(m) = HiX
d
i (m) + Wi(m),

m = P + 1, P + 2, · · · ,M ; i = 0, 1, · · · , N − 1, (8)

where the superscript d indicates the transmitted modulation
symbols are data symbols rather than preambles.

III. BER ANALYSIS

First, we need the following lemma to characterize the
effects of channel estimation error on the BER of various
modulation schemes in OFDM systems.

Lemma 1[9]: Let X and Y be zero mean, correlated
complex-valued Gaussian random variables and D1 =
Re[XY ∗], D2 = Im[XY ∗] where Re(x) and Im(x) denote
the real part and the imaginary part of x, respectively. Then

P (D1 < 0) =
1
2

{
1 − Re[µXY ]√

µXXµY Y − (Im[µXY ])2

}
(9)

P (D2 < 0) =
1
2

{
1 − Im[µXY ]√

µXXµY Y − (Re[µXY ])2

}
(10)

where

µXY = E[XY ∗], µXX = E[XX∗], µY Y = E[Y Y ∗]. (11)

�
For notational simplicity, we omit the index of OFDM

symbol m in the following discussion.

A. BPSK

For BPSK modulation, the FFT outputs of the OFDM data
symbol are

Yi = HiX
d
i + Wi, i = 0, 1, · · · , N − 1, (12)

where Xd
i ∈ {−√

Eb,
√

Eb}. For the ith subcarrier, the
decision statistics for the BPSK modulated OFDM signal with
imperfect CSI is Re[YiĤ

∗
i ] and the corresponding BER is

Pb(i) = P
{

Re[YiĤ
∗
i < 0]|Xd

i =
√

Eb

}
, (13)

where Ĥi is in (7). Conditioning on the transmitted symbol
Xd

i , the received signal Yi and channel estimate Ĥi are both
zero mean complex Gaussian random variables. To utilize
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Lemma 1 to obtain Pb(i), we first compute µYiĤi|Xd
i
, µYiYi|Xd

i
,

and µĤiĤi|Xd
i

as follows.

µYiĤi|Xd
i

= E[YiĤ
∗
i |Xd

i ] = α∗Xd
i + E[HiÎ

∗
i ]Xd

i . (14)

The expectation E[HiÎ
∗
i ] can be computed as

E[HiÎ
∗
i ] =

N−1∑
k=0,k �=i

E[HiH
∗
k ]

Xp
k

Xp
i

sin(πε)ejπ(k−i−ε(N−1))/N

N sin[π(k − i + ε)/N ]
.

(15)
Since Hi =

∑L−1
l=0 hle

−j2πil/N , the expectation E[HiH
∗
k ] for

i �= k in (15) is given by

E[HiH
∗
k ] = ρi,k =

{
1, i = k∑L−1

l=0 σ2
l ej2π(k−i)l/N , i �= k

.

(16)
Next, we compute µYiYi|Xd

i
as

µYiYi|Xd
i

= E[YiY
∗
i |Xd

i ] = |Xd
i |2 + N0. (17)

Finally, the µĤiĤi|Xd
i

is given by

µĤiĤi|Xd
i

= E[ĤiĤ
∗
i |Xd

i ] = E[ĤiĤ
∗
i ]

= E
[(

αHi + Îi + Ŵi

)(
α∗H∗

i + Î∗i + Ŵ ∗
i

)]

= |α|2 +
E[|Ii|2]
|Xp

i |2
+

N0

PEb
+ 2Re(αE[HiÎ

∗
i ]). (18)

The expectation E[|Ii|2] in (18) is E[|Ii|2] =

N−1∑
k1=0,k1 �=i

N−1∑
k2=0,k2 �=i

ρk1,k2X
p
k1

Xp
k2

sin2(πε)e−jπ(k1−k2)/N

N2φ(k1, i)φ(k2, i)
(19)

where φ(k, i) = sin[π(k − i + ε)/N ].
For subcarrier i, the BER of BPSK modulated OFDM signal

with imperfect channel estimate can be evaluated by Lemma
1 as

Pb(i) =
1
2


1 −

Re[µYiĤi|Xd
i
]√

µYiYi|Xd
i
µĤiĤi|Xd

i
− (Im[µYiĤi|Xd

i
])2


 ,

(20)
where µYiĤi|Xd

i
, µYiYi|Xd

i
and µĤiĤi|Xd

i
are given in (14),

(17), and (18) with Xd
i =

√
Eb. Finally, the average BER

over all subcarriers is

Pb =
1
N

N−1∑
i=0

Pb(i). (21)

B. QPSK

The constellation of QPSK is denoted by

X =
{

[(2i − 1) + (2q − 1)j]
√

Es√
2

, i = 0, 1, q = 0, 1
}

,

(22)
where Es is the symbol energy. Two information bits are
mapped into a QPSK constellation symbol by the Gray en-
coding [9] as shown in Fig. 1(a).

Fig. 1. (a) QPSK constellation with Gray encoding. (b) 16-QAM constella-
tion with Gray encoding.

Since the channel estimation is not perfect, the constellation
of the demodulated signal is scaled and rotated. To compute
the BER of the most significant bit (MSB) of the constellation
symbol, we consider two constellation symbols (1+j)

√
Es√

2
and

(−1+j)
√

Es√
2

were sent since they have different BERs due to
imperfect CSI. This is different from the perfect CSI case
where usually only one constellation symbol is considered to
be sent due to the symmetry of constellation and decision
boundary.

From Fig. 1(a), it is obviously the decision boundary for
the MSB of the QPSK symbol is the real axis and the BER
of the MSB of the subcarrier i is

Pb1(i) =
1
2

(
P

{
Im[YiĤ

∗
i ] < 0|Xd

i =
(1 + j)

√
Es√

2

}

+ P

{
Im[YiĤ

∗
i ] < 0|Xd

i =
(−1 + j)

√
Es√

2

})
.(23)

Similarly, to compute the BER of the least significant bit
(LSB) of the constellation symbol, we consider two con-
stellation symbols (1+j)

√
Es√

2
and (1−j)

√
Es√

2
were sent since

they have different BERs due to imperfect CSI. The decision
boundary for the LSB of the QPSK symbol is the imaginary
axis and the BER of the LSB of the subcarrier i is

Pb2(i) =
1
2

(
P

{
Re[YiĤ

∗
i ] < 0|Xd

i =
(1 + j)

√
Es√

2

}

+ P

{
Re[YiĤ

∗
i ] < 0|Xd

i =
(1 − j)

√
Es√

2

})
. (24)

Finally, the average BER over all subcarriers is

Pb =
1

2N

N−1∑
i=0

[Pb1(i) + Pb2(i)]. (25)

Conditioning on Xi, the random variables Yi and Ĥi are
also Gaussian because they are the weighted sum of Gaussian
random variables. Therefore, we can utilize Lemma 1 to
compute Pb1(i) and Pb2(i) where µYiĤi|Xd

i
, µYiYi|Xd

i
, and

µĤiĤi|Xd
i

are given in (14), (17), and (18) with possible Xd
i

in (23) and (24).
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Fig. 2. 16-QAM bit-by-bit demapping.

C. 16-QAM

The 16-QAM constellation with Gray encoding is shown in
Fig. 1(b). The first and third bits correspond to the inphase
(I) bits, while the second and fourth bits correspond to the
quadrature (Q) bits. The I and Q components of the 16-QAM
symbols are Gray encoded by assigning the bits 11, 10, 00,
and 01 to the levels −3d, −d, d, and 3d where d =

√
Es/10.

Since we are interested in the evaluation of BER, we need
to determine the decision boundary for each bit first. In Fig.
2, the decision boundaries for the MSB and LSB of the I/Q
components are depicted [12]. Due to the symmetry of I
and Q components, we only need to calculate the BER for
I components.

Let X be the constellation of 16-QAM, X1 be the set of
the four 16-QAM constellation symbols having d as their I-
component, i.e. X1 = {x ∈ X : Re[x] = d}. Similarly, let X2

be the set of the four 16-QAM constellation symbols having 3d
as their I-component, i.e. X2 = {x ∈ X : Re[x] = 3d}. Since
the decision boundary for the MSB bit is the imaginary axis,
for subcarrier i, the BER of the MSB bit of I components is
given by

PMSB
b (i) =

1
8

∑
Xd

i∈X1∪X2

P
{

Re[YiĤ
∗
i ] < 0|Xd

i

}
(26)

On the other hand, the decision boundaries for the LSB bit
are I = −2d and I = 2d on the I-Q plane. For subcarrier i,
the BER of the LSB bit of I components is

PLSB
b (i) =

1
8

∑
Xd

i∈X1

[
1 − P

(
−2d <

Re[YiĤ
∗
i ]

|Ĥi|2
< 2d|Xd

i

)]

+
1
8

∑
Xd

i∈X2

P

(
−2d <

Re[YiĤ
∗
i ]

|Ĥi|2
< 2d|Xd

i

) . (27)

The average BER of 16-QAM with imperfect CSI is

Pb =
1

2N

N−1∑
i=0

[
PMSB

b (i) + PLSB
b (i)

]
. (28)

Conditioning on the transmitted data symbol Xd
i , Yi and Ĥi

are both Gaussian. Therefore, we can use Lemma 1 to compute
PMSB

b (i) directly where µYiĤi|Xd
i
, µYiYi|Xd

i
, and µĤiĤi|Xd

i
are

given in (14), (17), and (18) with Xd
i ∈ X1∪X2. However, the

BER formula of PLSB
b (i) is not in the exact form of Lemma 1.

To apply Lemma 1 to compute PLSB
b (i), we need to transform

the random variable Yi into a new random variable Ŷi so that
Lemma 1 is applicable for Ŷi and Ĥi. To be more specific,
we consider to compute the following probability

f(Xd
i ,D) = P

{
Re[YiĤ

∗
i ] < |Ĥi|2D|Xd

i

}
. (29)

Let Ŷi = Yi − ĤiD = HiX
d
i + Wi − ĤiD, then

f(Xd
i ,D) = P

{
Re[ŶiĤ

∗
i ] < 0|Xd

i

}
. (30)

To apply Lemma 1, we first compute

µŶiĤi|Xd
i

= E[ŶiĤ
∗
i ] = E[HiĤ

∗
i ]Xd

i − E[ĤiĤ
∗
i ]D, (31)

where
E[HiĤ

∗
i ] = α∗ + E[HiÎ

∗
i ], (32)

and E[ĤiĤ
∗
i ] has been given in (18). Then we compute

µŶiŶi|Xd
i

= E[(Yi − ĤiD)(Yi − ĤiD)∗|Xd
i ] =

|Xd
i |2 + N0 + E[ĤiĤ

∗
i ]|D|2 − 2Re(E[ĤiDHi(Xd

i )∗]). (33)

Once the computation of f(Xd
i ,D) based on Lemma 1 is done,

we can express PLSB
b (i) in terms of f(Xd

i ,D) as

PLSB
b (i) =

1
8


 ∑

Xd
i∈X1

[
1 − f(Xd

i , 2d) + f(Xd
i ,−2d)

]

+
∑

Xd
i∈X2

[f(Xd
i , 2d) − f(Xd

i ,−2d)]


 . (34)

IV. NUMERICAL RESULTS

In this section, we present some simulation results to
validate our theoretical analysis.

A. Simulation Setup

We consider an OFDM system with N = 64 subcarriers.
The effective OFDM symbol period is T = 3.2 us and the
subcarrier frequency spacing fs is 312.5 kHz. The received
signal is sampled at the rate of 20 MHz. The power delay
profile of the multipath Rayleigh fading channel is exponen-
tially decaying and the root mean square (rms) delay spread
is equal to 100 ns. We also assume the channel is fixed for
whole frame and is independent from frame to frame. These
parameters and assumptions are typical for the indoor WLAN
applications.

The OFDM training symbol consists of 64 subcarriers,
which are modulated by the BPSK symbol of the sequence
S =

√
Eb[S0,15 S16,31 S32,47 S48,63], where

S0,15 = [−1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1,−1, 1,−1, 1],

S16,31 = [1, 1,−1,−1, 1,−1, 1, 1,−1, 1, 1,−1,−1, 1,−1, 1],

S32,47 = [1, 1, 1, 1, 1,−1,−1,−1,−1, 1,−1, 1,−1, 1, 1,−1],

S48,63 = [−1,−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1, 1,−1, 1,−1].

The training pattern S is selected randomly under the peak-
to-average power constraint, we do not try to optimize the
training pattern S at this moment.
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B. Results

Figs. 3 and 4 show the effects of channel estimation error
on the BER performance of BPSK and 16-QAM modu-
lated OFDM signals in multipath Rayleigh fading channels,
respectively. The number of training symbols P used for
channel estimation is 1. The solid lines are obtained from
computer simulation and the plot symbols are computed from
our theoretical results. The horizontal axis represents the
modulated data symbol SNR Es/N0. We assume the number
of the OFDM data symbols are much greater than that of
the OFDM training symbols in one frame, hence the loss of
power in the OFDM training symbols is negligible. Since the
subcarriers of training OFDM symbols is BPSK modulated,
the bit SNR Eb/N0 and symbol SNR Es/N0 is related by
Eb

N0
log2 |X | = Es

N0
where |X | is the size of the constellation.

From Figs. 3 and 4, it is evident the theoretical analysis
exactly matched with the simulation results for different nor-
malized CFO ε. When the CFO is perfectly compensated in
the channel estimation stage (i.e. ε = 0), the performance
loss due to imperfect CSI is about 3 dB and 7 dB for
BPSK and 16-QAM, respectively. As the normalized CFO ε
increases, the channel estimate becomes less reliable and the
BER performance becomes worse. Due to the effect of ICI
created by the CFO, there exist error floors when Eb/N0 is
large. Finally, by examining those three figures closely, we find
the performance degradation due to channel estimation error
is more severe in high-order modulation than in BPSK. That
implies the high-order modulation like 16-QAM needs more
accurate CFO and channel estimation to avoid performance
loss.

V. CONCLUSIONS

We investigated the effects of channel estimation error
on the BER performance of OFDM systems in multipath
fading channels. For BPSK, QPSK, and 16-QAM modulated
OFDM signals, we derived the BER formula characterizing the
performance degradation due to imperfect channel estimation.
Computer simulation was conducted to verify the accuracy
of our theoretical results. From the BER expression, we learn
the BER is dependent on the patterns of training symbols. The
design of optimal training sequence in the sense of minimal
BER is left for further study.
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